Type + realization link | h-Characteristic | Realization of h | sl(2)-module decomposition of the ambient Lie algebra \(\psi=\) the fundamental \(sl(2)\)-weight. | Centralizer dimension | Type of semisimple part of centralizer, if known | The square of the length of the weight dual to h. | Dynkin index | Minimal containing regular semisimple SAs | Containing regular semisimple SAs in which the sl(2) has no centralizer |
\(A^{165}_1\) | (2, 2, 2, 2, 2) | (18, 32, 42, 48, 25) | \(V_{18\psi}+V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 330 | 165 | C^{1}_5; | C^{1}_5; |
\(A^{85}_1\) | (2, 2, 2, 0, 2) | (14, 24, 30, 32, 17) | \(V_{14\psi}+V_{10\psi}+V_{8\psi}+2V_{6\psi}+2V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 170 | 85 | C^{1}_5; C^{1}_4+A^{1}_1; | C^{1}_5; C^{1}_4+A^{1}_1; |
\(A^{84}_1\) | (2, 2, 2, 1, 0) | (14, 24, 30, 32, 16) | \(V_{14\psi}+V_{10\psi}+2V_{7\psi}+V_{6\psi}+V_{2\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 168 | 84 | C^{1}_4; | C^{1}_4; |
\(A^{45}_1\) | (2, 0, 2, 0, 2) | (10, 16, 22, 24, 13) | \(V_{10\psi}+V_{8\psi}+3V_{6\psi}+V_{4\psi}+3V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 90 | 45 | C^{1}_5; C^{1}_3+B^{1}_2; | C^{1}_5; C^{1}_3+B^{1}_2; |
\(A^{40}_1\) | (0, 2, 0, 2, 0) | (8, 16, 20, 24, 12) | \(3V_{8\psi}+V_{6\psi}+3V_{4\psi}+V_{2\psi}+3V_{0}\)
| 3 | not computed | 80 | 40 | A^{2}_4; | A^{2}_4; |
\(A^{37}_1\) | (2, 2, 0, 0, 2) | (10, 16, 18, 20, 11) | \(V_{10\psi}+3V_{6\psi}+2V_{4\psi}+4V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 74 | 37 | C^{1}_4+A^{1}_1; C^{1}_3+2A^{1}_1; C^{1}_3+A^{2}_1; | C^{1}_4+A^{1}_1; C^{1}_3+2A^{1}_1; C^{1}_3+A^{2}_1; |
\(A^{36}_1\) | (2, 2, 0, 1, 0) | (10, 16, 18, 20, 10) | \(V_{10\psi}+2V_{6\psi}+2V_{5\psi}+V_{4\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 72 | 36 | C^{1}_4; C^{1}_3+A^{1}_1; | C^{1}_4; C^{1}_3+A^{1}_1; |
\(A^{35}_1\) | (2, 2, 1, 0, 0) | (10, 16, 18, 18, 9) | \(V_{10\psi}+V_{6\psi}+4V_{5\psi}+V_{2\psi}+10V_{0}\)
| 10 | \(\displaystyle B^{1}_2\) | 70 | 35 | C^{1}_3; | C^{1}_3; |
\(A^{21}_1\) | (0, 2, 0, 0, 2) | (6, 12, 14, 16, 9) | \(3V_{6\psi}+3V_{4\psi}+6V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 42 | 21 | C^{1}_3+B^{1}_2; 2B^{1}_2+A^{1}_1; A^{2}_3+A^{1}_1; | C^{1}_3+B^{1}_2; 2B^{1}_2+A^{1}_1; A^{2}_3+A^{1}_1; |
\(A^{20}_1\) | (0, 2, 0, 1, 0) | (6, 12, 14, 16, 8) | \(3V_{6\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{1}_1\) | 40 | 20 | 2B^{1}_2; A^{2}_3; | 2B^{1}_2; A^{2}_3; |
\(A^{18}_1\) | (1, 0, 1, 1, 0) | (6, 10, 14, 16, 8) | \(V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
| 3 | not computed | 36 | 18 | A^{2}_2+B^{1}_2; | A^{2}_2+B^{1}_2; |
\(A^{13}_1\) | (2, 0, 0, 0, 2) | (6, 8, 10, 12, 7) | \(V_{6\psi}+3V_{4\psi}+10V_{2\psi}+3V_{0}\)
| 3 | not computed | 26 | 13 | C^{1}_3+2A^{1}_1; B^{1}_2+3A^{1}_1; C^{1}_3+A^{2}_1; B^{1}_2+A^{2}_1+A^{1}_1; | C^{1}_3+2A^{1}_1; B^{1}_2+3A^{1}_1; C^{1}_3+A^{2}_1; B^{1}_2+A^{2}_1+A^{1}_1; |
\(A^{12}_1\) | (2, 0, 0, 1, 0) | (6, 8, 10, 12, 6) | \(V_{6\psi}+2V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{1}_1\) | 24 | 12 | C^{1}_3+A^{1}_1; B^{1}_2+2A^{1}_1; B^{1}_2+A^{2}_1; | C^{1}_3+A^{1}_1; B^{1}_2+2A^{1}_1; B^{1}_2+A^{2}_1; |
\(A^{11}_1\) | (2, 0, 1, 0, 0) | (6, 8, 10, 10, 5) | \(V_{6\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+4V_{\psi}+10V_{0}\)
| 10 | \(\displaystyle B^{1}_2\) | 22 | 11 | C^{1}_3; B^{1}_2+A^{1}_1; | C^{1}_3; B^{1}_2+A^{1}_1; |
\(A^{10}_1\) | (2, 1, 0, 0, 0) | (6, 8, 8, 8, 4) | \(V_{6\psi}+6V_{3\psi}+V_{2\psi}+21V_{0}\)
| 21 | \(\displaystyle C^{1}_3\) | 20 | 10 | B^{1}_2; | B^{1}_2; |
\(A^{10}_1\) | (0, 1, 0, 1, 0) | (4, 8, 10, 12, 6) | \(3V_{4\psi}+4V_{3\psi}+4V_{2\psi}+4V_{\psi}+4V_{0}\)
| 4 | not computed | 20 | 10 | A^{2}_2+2A^{1}_1; A^{2}_2+A^{2}_1; | A^{2}_2+2A^{1}_1; A^{2}_2+A^{2}_1; |
\(A^{9}_1\) | (0, 1, 1, 0, 0) | (4, 8, 10, 10, 5) | \(3V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+6V_{0}\)
| 6 | not computed | 18 | 9 | A^{2}_2+A^{1}_1; | A^{2}_2+A^{1}_1; |
\(A^{8}_1\) | (0, 2, 0, 0, 0) | (4, 8, 8, 8, 4) | \(3V_{4\psi}+9V_{2\psi}+13V_{0}\)
| 13 | not computed | 16 | 8 | A^{2}_2; | A^{2}_2; |
\(A^{5}_1\) | (0, 0, 0, 0, 2) | (2, 4, 6, 8, 5) | \(15V_{2\psi}+10V_{0}\)
| 10 | not computed | 10 | 5 | 5A^{1}_1; A^{2}_1+3A^{1}_1; 2A^{2}_1+A^{1}_1; | 5A^{1}_1; A^{2}_1+3A^{1}_1; 2A^{2}_1+A^{1}_1; |
\(A^{4}_1\) | (0, 0, 0, 1, 0) | (2, 4, 6, 8, 4) | \(10V_{2\psi}+8V_{\psi}+9V_{0}\)
| 9 | not computed | 8 | 4 | 4A^{1}_1; A^{2}_1+2A^{1}_1; 2A^{2}_1; | 4A^{1}_1; A^{2}_1+2A^{1}_1; 2A^{2}_1; |
\(A^{3}_1\) | (0, 0, 1, 0, 0) | (2, 4, 6, 6, 3) | \(6V_{2\psi}+12V_{\psi}+13V_{0}\)
| 13 | not computed | 6 | 3 | 3A^{1}_1; A^{2}_1+A^{1}_1; | 3A^{1}_1; A^{2}_1+A^{1}_1; |
\(A^{2}_1\) | (0, 1, 0, 0, 0) | (2, 4, 4, 4, 2) | \(3V_{2\psi}+12V_{\psi}+22V_{0}\)
| 22 | \(\displaystyle C^{1}_3\) | 4 | 2 | 2A^{1}_1; A^{2}_1; | 2A^{1}_1; A^{2}_1; |
\(A^{1}_1\) | (1, 0, 0, 0, 0) | (2, 2, 2, 2, 1) | \(V_{2\psi}+8V_{\psi}+36V_{0}\)
| 36 | \(\displaystyle C^{1}_4\) | 2 | 1 | A^{1}_1; | A^{1}_1; |